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Polyamines are essential for the growth and function of
normal cells. They interact with various macromolecules, both
electrostatically and covalently and, as a consequence, have a
variety of cellular effects. The complexity of polyamine meta-
bolism and the multitude of compensatory mechanisms that
are invoked to maintain polyamine homoeostasis argue that these
amines are critical to cell survival. The regulation of polyamine
content within cells occurs at several levels, including transcrip-
tion and translation. In addition, novel features such as the
+ 1 frameshift required for antizyme production and the rapid
turnover of several of the enzymes involved in the pathway
make the regulation of polyamine metabolism a fascinating
subject. The link between polyamine content and human disease
is unequivocal, and significant success has been obtained in
the treatment of a number of parasitic infections. Targeting the
polyamine pathway as a means of treating cancer has met with
limited success, although the development of drugs such as DFMO

(α-difluoromethylornithine), a rationally designed anticancer
agent, has revolutionized our understanding of polyamine
function in cell growth and provided ‘proof of concept’ that
influencing polyamine metabolism and content within tumour
cells will prevent tumour growth. The more recent development
of the polyamine analogues has been pivotal in advancing our
understanding of the necessity to deplete all three polyamines
to induce apoptosis in tumour cells. The current thinking is that
the polyamine inhibitors/analogues may also be useful agents
in the chemoprevention of cancer and, in this area, we may
yet see a revival of DFMO. The future will be in adopting a
functional genomics approach to identifying polyamine-regulated
genes linked to either carcinogenesis or apoptosis.

Key words: apoptosis, cancer, cell growth, putrescine, spermidine,
spermine.

INTRODUCTION

The initial discovery of the polyamines dates back to 1678 when
Antonie van Leeuwenhoek isolated some ‘three-sided’ crystals
from human semen [1]. However, it was not until 1924 that
the empirical formula of the crystals was deduced [2], and it
was a further 2 years before the products were synthesized
chemically [3]. The names spermidine and spermine therefore
reflect the original discovery. Putrescine (1,4-diaminobutane) was
first isolated from Vibrio cholerae, but it derives its common name
from the large quantities found in putrefying flesh [4]. From these
inauspicious beginnings it is therefore perhaps surprising that,
today, polyamines should be considered critical regulators of cell
growth, differentiation and cell death. In the last 30 years there
has been a steady rise in the number of publications per annum
focussing on polyamines, with approx. 1600 papers published in
2000.

Polyamines are found in all living species, except two orders of
Archaea, Methanobacteriales and Halobacteriales [5]. This con-
servation across evolution is a positive feature in that it argues for
their importance in cell survival, but it may also be a drawback in
that it implies a lack of specific function [6].

POLYAMINES AS CATIONS

At physiological pH, polyamines carry a positive charge on each
nitrogen atom and it has been suggested that polyamines are sim-
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ply ‘supercations’, equivalent to one or two calcium or magnesium
molecules. However, the charge on the polyamines is distributed
along the entire length of the carbon chain, making them unique
and distinct from the point charges of the cellular bivalent cations.

Their positive charge enables polyamines to interact electro-
statically with polyanionic macromolecules within the cell.
Spermidine and spermine can bridge the major and minor grooves
of DNA, acting as a clamp holding together either two different
molecules or two distant parts of the same molecule [7]. Structural
studies indicate that the polyamines interact with individual
rather than multiple DNA molecules [8]. Selectivity of polyamine
binding to secondary structures of DNA has been suggested from
crystallographic studies with polyamines having a preference
for pyrimidine residues, particularly thymidine, although this
may be influenced by the neighbouring nucleotides and the
nature of the secondary structure [9]. Polyamine analogues such
as bis(ethyl)homospermine (‘BEHSpm’; ‘BE-4-4-4’) have been
shown to alter the DNA–nuclear matrix interaction, suggesting
that not only do polyamines alter the structure of DNA, but they
also influence its function [10]. In the nucleosome, polyamine
depletion results in partial unwinding of DNA and unmasking
of sequences previously buried in the particle. These newly re-
vealed sequences are potential binding sites for factors regulating
transcription [11]. This, together with the fact that polyamines
favour the formation of triplex DNA at neutral pH, may provide
a mechanism whereby polyamines regulate the transcription of
growth regulatory genes such as c-myc [12–14].
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Scheme 1 Pathways of polyamine metabolism

Further abbreviation: MAT , methionine adenosyltransferase.

In addition to interracting with DNA and RNA, polyamines
can also interact with acidic phospholipids in membranes [15].
In general, spermidine and spermine increase the rigidity of the
membrane by forming complexes with phospholipids and pro-
teins. They may also have an antioxidant role, preventing lipid
peroxidation [16]. Polyamines have been implicated in the regu-
lation of several membrane-bound enzymes, including adenylate
cyclase [17], tissue transglutaminase [18] and some ion channels
such as NMDA (N-methyl-D-aspartate), KIR (inwardly rectifying
K+) and voltage-activated Ca2 + channels [19–21].

If, however, charge is the defining feature of the polyamines,
then surely one polycation would be sufficient? The most obvious
choice would be spermine, as it has the greatest charge, longest
length and most flexibility. The sheer complexity of the regulation
and metabolism used by the polyamines argues that they, or their
associated enzyme activities, have other critical functions within
the cell not based solely on direct charge–charge interactions.

POLYAMINE METABOLISM

In eukaryotic cells, the three polyamines are synthesized from
L-arginine (via L-ornithine) and L-methionine by a series of
six interdependent enzyme reactions (Scheme 1). Putrescine
is formed from the decarboxylation of ornithine, by ODC

(ornithine decarboxylase; EC 4.1.1.17), and this combines
with dcSAM (decarboxylated S-adenosylmethionine) formed by
SAMDC (S-adenosylmethionine decarboxylase; EC 4.1.1.50), to
produce spermidine via spermidine synthase (EC 2.5.1.16), and
spermine through a second aminopropyltransferase reaction
involving spermine synthase (EC 2.5.1.22). The synthases are
stable enzymes that are expressed constitutively with little re-
corded inducibility [22]. Both enzymes are active as homo-
dimers: spermidine synthase has a subunit molecular mass of
36 kDa, whereas spermine synthase consists of two subunits
of 44 kDa. Unlike the decarboxylases, both enzymes are regulated
by the availability of their substrates, with the Km values resembl-
ing closely the tissue concentrations for dcSAM and putrescine
or spermidine.

SSAT (spermidine/spermine N1-acetyltransferase; EC 2.3.1.57)
is the first step in the retroconversion process, using acetyl-
CoA to form N1-acetylspermidine and spermine. The N1-acetyl
derivatives are then the preferred substrates of FAD-dependent
PAO (polyamine oxidase; EC 1.5.3.11), producing spermidine and
putrescine respectively [23]. The intermediate products of poly-
amine catabolism, N1-acetylspermidine and N1-acetylspermine,
are found only rarely in normal cells, mainly because these are the
major polyamines exported from the cell [24]. Acetylpolyamines
are, however, found in high concentrations in cancer cells, provi-
ding a link between alterations in polyamine metabolism and
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Scheme 2 Polyamine metabolism and the potential for cell death

Metabolism of polyamines via SSAT and PAO produces H2O2. H2O2 induces both SSAT and cell death, thus causing a positive cell-death-signal-generating cycle.

carcinogenesis [25,26]. Oxidation of acetylated polyamines
results in the production of stoichiometric amounts of 3-aceta-
midopropanol and H2O2, both of which have been shown to result
in toxicity and cell death [27,28]. Effectively, this means that
the metabolism of the higher polyamines could generate a self-
sustaining cell death cycle (Scheme 2). SSAT and PAO work
in concert to acetylate and oxidize the polyamines, generating
H2O2 on each oxidation. H2O2 is an inducer of SSAT activity,
thereby perpetuating the cycling. The high local concentrations
of H2O2 produced could then lead to oxidative stress and cell death
[29].

The reactions forming polyamines were, until recently, con-
sidered essentially irreversible, with a separate retroconversion
pathway to recycle spermidine and putrescine from spermine and
spermidine respectively (Scheme 1). However, towards the end
of 2002, an oxidase was cloned that converts spermine back into
spermidine without the need for an acetylation step [132]. This
enzyme has now been termed ‘spermine oxidase’ (SMO) [30], and
we wait with interest to learn more of its function and regulation.
These pathways of synthesis and breakdown are highly regulated,
and several of the enzymes involved are subject to control at many
levels, including transcription, post-transcription, translation and
post-translation (see below).

TRANSPORT OF POLYAMINES

Although de novo synthesis is the major route to the production
of polyamines in mammalian cells, transport into and out of the
cell also contributes to polyamine homoeostasis [31]. Preformed
polyamines are derived either from the diet (we all consume large
quantities of polyamines everyday) [32] or from the intestinal
flora [33]. Despite the fact that we do eat significant quantities
of polyamines, the bioavailability of these polyamines in man is
not known. In order to establish whether these dietary amines are
beneficial or, indeed, detrimental, their bioavailability in man must
be assessed properly. The contribution to the total polyamine pool
from gut metabolism is less clear, but, at present, it seems unlikely
that microbially derived polyamines are a major contributor to the
total body content.

Despite a sustained effort over the last decade, the mammalian
polyamine transporter has not yet been cloned. It has been sug-

gested that the polyamine transporter is carrier-mediated, energy-
dependent and saturable [34,35]. However, recent evidence
points to endocytosis as an alternative mechanism of polyamine
internalization [36]. Although some cells have a single carrier for
all three polyamines, most cell types appear to have two classes
of carrier: one with a preference for putrescine and one for sper-
midine and spermine [37]. The evidence for the separate trans-
porters comes from competition and substrate-specificity studies
and from their dependence, or not, on sodium [38]. The polyamine
uptake system transports molecules as diverse as paraquat [39],
MGBG [methyglyoxal bis(guanylhydrazone)] [40] and poly-
amine analogues [41,42]. This lack of specificity has been used
to advantage in the design of potential inhibitors of polyamine
metabolism and in the targeting of cytotoxic drugs to DNA [43].

Polyamines can also be transported out of cells [24]. Export is a
selective process that is regulated by the growth status of the cell,
being switched on by a decrease in cell growth rate and switched
off in response to a growth stimulus [44,45]. For example, in
cultured cells, polyamine export increases in response to contact
inhibition of growth, decreases in serum or nutrients [44,46],
treatment with antiproliferative drugs [47] and viral infection
[48]. On the other hand, export is decreased by initiation of cell
growth (e.g. by addition of fresh serum) [44]. In most cases, the
major polyamines exported from the cell are N1-acetylspermidine
and putrescine [45]. This is in contrast with the normal intra-
cellular polyamine pool, where the predominant polyamine, at
least in human cells, is spermine. This evidence indicates that
export is a selective and regulated process, with metabolism
required before efflux. Thus the enzymes involved in polyamine
catabolism and the outward transporter should be regulated by the
same signals.

Preliminary evidence from our laboratory using selective
uptake inhibitors indicates that the inward and outward trans-
porters are separate and distinct, since the inhibitors of uptake had
no effect on polyamine export (H. M. Wallace, A. J. Mackarel,
A. V. Fraser and R. A. Fearn, unpublished work).

Specific inhibitors, directed to almost every step in the path-
way, have been synthesized and developed (Table 1) – the only
exception is the outward export process, for which there is, as
yet, no inhibitor. These agents have tended to be single enzyme
inhibitors and, in general, have been found to deplete only two
out of the three polyamines. Although useful experimental tools
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Table 1 Known inhibitors of polyamine metabolism

Inhibitor

Enzyme Abbreviation Systematic name Reference

SAMDC AbeAdo 5′-{[(Z)-4-Amino-2-butenyl]methylamino}-5′-deoxyadenosine [49]
AdoMac S-[5′-Deoxy-5′-adenosyl]-1-ammonio-4-[methylsulphonio]-2-cyclopentene [50]
AdoMao S-[5′-Deoxy-5′-adenosyl]-1-aminoxy-4-[methylsulphonio]-2-cyclopentene [51]
AMA S-[5′-Deoxy-5′-adenosyl]methylthioethylhydroxylamine [52]
APA 1-Amino-oxy-3-aminopropane [53]
CGP 39937 (2,2-Bipyridine)-6,6′-dicarboximidamide [54]
CGP 48664 4-Amidinoindanon-1-(2′-amidino)hydrazone [54]
EGBG Ethylglyoxal bis(guanylhydrazone) [55]
MGBG Methylglyoxal bis(guanylhydrazone) [56]
MAOEA 5′-Deoxy-5′-[(2-aminooxyethyl)methylamino] adenosine [57]
MHZPA 5′-Deoxy-5′-[(3-hydrazinopropyl)methylamino] adenosine [57]

ODC AEO α-Ethylornithine [58]
AHO α-Hydrazino-ornithine [59]
APA 1-Amino-oxy-3-aminopropane [53]
AVO α-Vinylornithine [58]
AHMPA (+−)-5-Amino-2-hydrazine-2-methylpentanoic acid [60]
DAB 1,4-Diaminobutane [61]
DAP 1,3-Diaminopropane [62]
DAPOH 1,3-Diaminopropan-2-ol [63]
DFMO α-Difluoromethylornithine [64]
DL-HAVA DL-α-Hydrazino-δ-aminovaleric acid [65]
MAP (2R,5R)-6-Heptyne-2,5-diamine [66]
MFMP DL-α-Monofluoromethylputrescine [67]
V-MFMO (E)-2-Fluoromethyldehydro-ornithine [68]
α-MO α-Methylornithine [69]

Spermidine synthase AdoDATO S-Adenosyl-1,8-diamino-3-thio-octane [70]
APA 1-Amino-oxy-3-aminopropane [53]
DCHA Dicyclohexylamine sulphate [71]
4MCHA trans-4-Methylcyclohexylamine [72]

Spermine synthase AdoDATAD S-Adenosyl-1,12-diamino-3-thio-9-azadodecane [73]
AP-APA 1-Amino-oxy-3-N-(3-aminopropyl)aminopropane [74]
APCHA N-(3-Aminopropyl)cyclohexylamine [72]
AOE-PU N-(2-Amino-oxyethyl)-1,4-diaminobutane [74]

SSAT Berenil 1,3-Tris-(4′-amidinophenyl)triazine [75]
Pentamidine p,p′-(Pentamethylenedioxy)dibenzamidine [75]

PAO MDL 72527 N1,N 4-bis(buta-2,3-dienyl)butane-1,4-diamine [76]
Pentamidine p,p′-(Pentamethylenedioxy)dibenzamidine [75]

SMO N(1)OSSpm N1-(n-octanesulphonyl)spermine [30]

Polyamine transport AOSPM 11-[(Amino)oxy]-4,9-diaza-1-aminoundecane [77]
ORI 1202 N1-Spermyl-L-lysinamide [78]

in defining the role of the polyamines in a number of cellular
processes, the inhibitors, with the notable exception of α-
difluoromethylornithine (DFMO), have proven to be of limited
use in the treatment and/or prevention of disease.

REGULATION OF METABOLISM

What, then, are the key regulatory points in the metabolism of the
polyamines? The critical enzymes have historically been ODC
and SSAT, although recent evidence also points to an increasingly
important role for PAO. ODC and SSAT are considered to be rate-
limiting for biosynthesis and catabolism respectively, because of
their early and rapid responses to stimuli. However, ‘rate-limiting’
is inappropriate, and ‘regulatory’ is a more correct term. Recently,
PAO has also been found to be inducible, and therefore provides
an additional point of regulation in the retroconversion pathway
[79].

ODC

ODC is in itself an interesting enzyme with several novel regu-
latory features. It is a highly inducible, cytosolic, subunit enzyme
that responds to a range of trophic stimuli [80]. It has a short
half-life (10 min–1 h) compared with many mammalian enzymes
whose half-lives are more often expressed in days [81]. ODC
requires pyridoxal phosphate as a cofactor, and thiol-group-
reducing agents are necessary for enzyme activity, possibly owing
to the high number of cysteine residues in the protein.

ODC contains two PEST (proline-, glutamate-, serine- and
threonine-rich) regions that are rich in proline, glutamic acid,
aspartic acid, serine and threonine [82]. The PEST region located
at the C-terminus of ODC is essential for the degradation of the
enzyme, and truncations and mutations in this region result in
stabilization of the enzyme [83]. ODC activity is dependent upon
the formation of a dimer with the active site, occurring at the
interface between the two subunits [84]. Residues at the active
site critical to ODC activity include Lys169 and His197 [85].
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ODC expression is also regulated by transcription, stability and
the efficiency of translation of the mRNA. At a transcriptional
level, ODC expression can be regulated by oncogenes. The hODC
gene contains three CACGTG regions: one at the 5′ promoter
region and two others in intron 1 [86] that bind the protein pro-
duct of the c-myc oncogene [87]. Overexpression of c-myc and
other oncogenes such as v-mos [88], Ha-ras [89] and c-fos [90]
can lead to overexpression and induction of ODC and, ulti-
mately, carcinogenesis. ODC mRNA has long 5′ and 3′ UTRs
(untranslated regions) and, whereas neither region seems to be
involved in polyamine-mediated feedback control of ODC activity
[91], the 3′ UTR may have a role in regulation under special
circumstances, such as hypotonic shock [92].

Increases in ODC activity are one of the early changes observed
in cells stimulated to grow and these increases precede changes
in DNA synthesis by several hours, making ODC an ‘immediate
early’ response gene [93]. ODC is subject to both positive and
negative feedback regulation by polyamines: high polyamine
concentrations decrease, and low polyamine concentrations in-
crease, activity. The feedback regulation appears to be a mixture
of post-transcriptional regulation and the induction of a unique
ODC-specific inhibitor termed ‘antizyme’ (AZ) [94].

AZ

AZ is a small (23 kDa) regulatory protein that is induced by in-
creased intracellular concentrations of polyamines that trigger
a + 1 translational frameshift on the AZ mRNA, allowing the
complete AZ protein to be expressed [95]. AZ binds to ODC [96]
and the AZ–ODC complex is degraded by the 26 S proteasome.
Unusually, the degradation of ODC by this proteasome occurs in
an ATP-dependent, but ubiquitin-independent, manner [97,98].
The majority of proteins degraded by the 26 S proteasome use
ubiquitin to target the molecule for degradation [99,100]. ODC
can be released from AZ by another unique protein, called ‘anti-
zyme inhibitor’ (AZI), which liberates ODC in the presence of
growth stimuli by virtue of having a higher affinity for AZ than for
ODC [101]. Additionally, AZ can alter polyamine homoeostasis
by down-regulating polyamine uptake independent of the effects
on ODC (Scheme 1) [102–104]. It may be that AZ binding to ODC
causes a conformational change in ODC, resulting in exposure of
its C-terminus, so targeting it for degradation [105].

Currently, three forms of AZ have been identified and charac-
terized, with each having a specific role in polyamine metabolism
[106]. AZ 1 is strongly associated with the degradation of ODC.
AZ 2 has been shown to have a low ability to induce ODC de-
gradation, and has shown to have more involvement in the negative
regulation of polyamine transport [102,107]. The expression of
AZ 3 is limited to testis germ cells, where its expression occurs at
a particular stage of spermatogenesis [108,109]. A putative fourth
AZ is currently being investigated [106].

SSAT

SSAT is a cytosolic enzyme originally identified as a homodimer
[110], but now believed to be a homotetramer of molecular
mass about 80 kDa [111,112]. It acetylates specifically at primary
amino groups, with no reports of acetylation at secondary amino
groups. Spermidine and spermine, but not putrescine, are sub-
strates for the enzyme. In our hands, spermidine is approximately
three times more efficient as a substrate of the SSAT enzyme
than is spermine (C. S. Coleman and H. M. Wallace, unpublished
work). Acetylation occurs by a Bi Bi kinetic model, with the
substrate binding to the active site first and the acetylated product

being released last. The acetyl-CoA binding site is proposed to be
in a conserved region of 20 amino acids beginning with Arg101 and
consisting of the sequence RGFGIGS [113]. Arginine at positions
142 and 143 are also required for acetyl-CoA binding [114].

Spermidine is asymmetric, and two products can be formed:
N1-acetylspermidine, where the acetyl group is attached to the
aminopropyl group; and N8-acetylspermidine, with the acetyl
group is attached to the aminobutyl group. The N8-specific acetyl-
transferase is a separate nuclear enzyme with a substrate speci-
ficity that includes histones [115]. This enzyme is not inducible,
and the N8-acetylspermidine is either deacetylated or excreted.
N8-Acetylspermidine is not a substrate for PAO.

Acetylated polyamines have a decreased positive charge rela-
tive to free polyamines, and therefore, as with acetylated histones,
will have a decreased affinity for DNA and RNA, thus weakening
or preventing binding to intracellular sites. N1-Acetylpolyamines
are the preferred substrates for PAO and are also the major ex-
cretory products from cells [45]. Thus competition exists between
oxidation and export, and this appears to be regulated by growth
status. If polyamines are required for cell growth, then recycling
of spermine to putrescine occurs. If, however, cell growth is
restricted, then the acetyl derivatives are exported from the cell,
resulting in a net loss of polyamines [116].

SSAT has several features in common with ODC: it has a
short half-life (20–40 min); it is highly regulated at several levels,
and is readily inducible. Unlike most proteins that undergo rapid
turnover, SSAT does not contain a PEST region [117]. However,
the terminal MATEE motif may substitute for a PEST region,
which, while lacking proline, does contain serine, threonine and
acidic residues [118].

The first observations that SSAT was inducible came from
studies with carbon tetrachloride [119] and MGBG [120,121].
Induction of SSAT requires both protein and RNA synthesis [122].
In the case of MGBG, the increase in activity was the result of
stabilization of the enzyme protein [121]. Enzyme stabilization
has also been reported in response to spermidine and spermine
[123]. SSAT, like ODC, is degraded by the 26 S proteasome; how-
ever, it is ubiquitin that directs SSAT to the proteasome [118].

The most interesting aspect of SSAT regulation is the response
of the enzyme to the polyamine analogues. Several studies have
shown induction of SSAT in response to analogues and, in
some cases, ‘superinduction’ of many thousandfold (for a review,
see [124]). Superinduction of SSAT is due to a combination of
enhanced mRNA transcription, stabilization of the message and
the protein, and enhanced translation [125]. A second isoform
of SSAT has also been reported [126]. Recently, a polyamine
response element (PRE) has been identified in the regulatory
region of the human SSAT gene [127]. This cis element is asso-
ciated with the transcription factor Nrf-2 (nuclear factor-E2-
related factor 2), which has only been found in cells capable
of superinduction of SSAT. Thus Nrf-2, or similar proteins, may
be important in SSAT regulation [128].

PAO

Originally it was proposed that PAO was a constitutive enzyme,
and that SSAT was the regulating enzyme in polyamine retro-
conversion. However, PAO activity is increased by growth inhibi-
tion [129], in response to the anticancer drug etoposide [130] and
in cancer cells when they reach high density [131]. These results
provided the initial indications that PAO may also play a role in
polyamine homoeostasis.

Wang et al. [132] cloned and characterized a protein, provi-
sionally named PAO-1, with a molecular mass similar to that of
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Figure 1 Relationship between polyamine metabolism and cell-cycle-regulatory proteins

Increases in ODC and polyamine concentrations occur in both G1/S- and G2-phases of the cell cycle. Alterations in SSAT appear later during M-phase. The changes in expression of the cyclins, cdks
and their corresponding inhibitors are specific to each phase of the cell cycle and are shown in block arrows.

the PAO obtained by Holtta in 1977 [133]. However, in these
studies, spermine was used as the substrate, leading to cont-
roversy as to whether this enzyme is the PAO described pre-
viously. A second oxidase, SMO [30,79], has been cloned using
similar methodology, again with spermine as the substrate. Further
investigations showed that SMO differed by only one amino
acid from PAO-1, and, since both enzymes were identified using
spermine as a substrate, it seems likely these are both spermine-
specific oxidases. Currently, at least four active isoenzymes have
been identified and shown to have PAO activity, with each iso-
enzyme demonstrating a different substrate specificity [134].
There are indications, however, that none of the enzymes
purified to date match the profile of the PAO involved in the
retroconversion pathway, mainly because the purified protein(s)
does not have the preference for acetylated polyamines described
in the literature [23,30]. In a separate study [135], embryonic
stem cells showed conversion of spermine into spermidine in the
absence of SSAT activity, thus suggesting the presence of a SMO-
like activity in these embryonic stem cells too.

The use of selective inhibitors of amine oxidases will help
to characterize the individual oxidases and the contribution each
enzyme/isoform makes to polyamine homoeostasis. Currently, the
enzyme nomenclature is confusing, especially between SMO and
PAO. The need for clear appropriate naming of the enzymes is
essential, and it would seem logical to distinguish between the
N1-acetylspermine-preferring PAO and the spermine-preferring
SMO. Regardless, this discovery of multiple inducible enzymes
will change the way in which we view the dynamics of polyamine
catabolism, with cells no longer requiring the interaction of
SSAT to convert spermine into spermidine. It is interesting to
re-examine the polyamine export studies in the light of these new
discoveries. The possibility exists that spermine is converted into
spermidine by SMO, and spermidine is then subject to acetylation

prior to export, thus explaining both the preference of SSAT for
spermidine as a substrate and the presence of N1-acetylspermidine
and the lack of N1-acetylspermine in the extracellular environment
[45].

POLYAMINES – MEDIATORS OF CELL GROWTH AND/OR
CELL DEATH?

Why have cells developed this complex system of regulation for
polyamine metabolism? Historically, it was believed that the role
of the polyamines was as intracellular growth factors, increas-
ing the rate of cell growth and differentiation. More recently, it
has been shown [136] that polyamines can also regulate the cell-
death process known as apoptosis. Thus it now appears that the
polyamines are bivalent regulators of cellular function, promoting
cell growth or cell death depending on other environmental
signals. Under normal circumstances polyamine concentrations
regulate their own biosynthesis and prevent overproduction.
However, in extreme cases, high exogenous polyamine concentr-
ations can lead to cell death [137,138].

Polyamines and the regulation of cell growth

Normal cell growth is regulated in a cyclical manner by increases
and decreases in specific proteins and protein kinases known as
cyclins and cyclin-dependent kinases (cdks) [139]. Appropriate
activation of the cdks and their partner cyclins is required for
continual progression through the cell cycle. The cyclin/cdks ex-
hibit cycle-specific regulation, with cyclins A, B, D and E and
their respective cdk partners increasing and decreasing in a re-
gulated and co-ordinated manner during the G1-, S- and G2/M-
phases of the cell cycle (Figure 1).
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Table 2 Cell-cycle changes in response to altered polyamine content

Further abbreviations used: CGP 48664, amidinoindan-1-one 2′-amidinohydrazone; DENSpm, diethylnorspermine; IPENSpm, (S)-N1-(2-methyl-1-butyl)-N11-ethyl-4,8-diazaundecane; MDL 73811,
5′-{[(Z)-4-aminobut-2-enyl]methylamino}-5′-deoxyadenosine; CHO, Chinese-hamster ovary.

Phase of
Cell line Treatment arrest Effect Reference

IEC-6 DFMO G1 Increased p21, p27 and p53 expression [146]

Hep-2 DFMO Increased cyclin A during M phase [147]

HL-60 DFMO G1 [148]

MKN45 DFMO G1 Increased p21 expression [149]

MALME-3M DFMO/MDL 73811 G1 Increased p21 expression [143]
Methyl, ethyl and propyl G1 [152]

spermine analogues

SW620 MDL 72527 S [150]

CHO CGP 48664 Increased length in S-phase [151]

CHO DENSpm Delay in S-phase [153]

MDA-MB-468 CHENSpm, IPENSpm G2/M [154]

HL-60 CHENspm G1 [155], but see [155a]
IPENSpm G1 [156]

PNT1A/PNT2 Antisense ODC RNA/ S
antisense AZ cDNA
SSAT cDNA G2/M [157]

Rodent fibroblasts Transformed ODC Increased cyclin D1, D1 kinase and cdk4 expression
Transformed SAMDC Increased cyclin E-dependent kinase and decreased p27 expression [158]

It has been known for many years that there are also changes
in both ODC and polyamine concentrations during the cell cycle
[140]. There is an early peak in ODC at G1-phase, followed by
an increase in polyamine content, and a later, second, increase
during G2-phase and prior to mitosis [141]. Thus both polyamines
and cyclin/cdks show phased changes through the cell cycle, but
the interaction between these two sets of regulatory molecules
remains to be defined. One suggestion is that polyamines regulate
cyclin degradation [142]. Intracellular polyamine concentrations
have been reported to regulate both the up- and down-regulation of
important cellular checkpoints within the cell cycle, and this may,
in part, explain why their concentrations are controlled throughout
the cycle (Figure 1) [143,144].

It is interesting that, whereas the first increase in ODC during
the cell cycle (G1) is mediated by the usual cap-dependent initi-
ation of translation, the second increase occurs when protein
synthesis is inhibited. The second increase is cap-independent
and is mediated by an internal ribosomal entry site [145]. It has
been suggested that putrescine is essential for the cell to enter
S-phase, possibly pushing the cell through the G1 restriction
point prior to DNA synthesis. However, it is not just the relative
polyamine concentrations that are important in the progression
of the cell through the cell cycle – ODC, AZ and SSAT are also
up- and down-regulated. ODC and AZ are increased in early S-
phase, with a decrease in AZ during mid-S-phase, whereas AZ
and SSAT expression are up-regulated in G2/M-phase (Figure 1)
[141].

One would predict from the discussion above that depletion of
polyamines would result in cell-growth arrest. The arrest point
varies with the drug used, with DFMO, for example, resulting in
a G1-phase block. A summary of these results to date is shown
in Table 2.

With such a strong positive relationship to cell growth, it is
perhaps not surprising that there has been an increasing effort
over the last three decades to link polyamine metabolism to can-
cer development and to attempt to use inhibitors of polyamine
biosynthesis as antiproliferative agents (Table 1). It is now some
30 years since the first observations linked overproduction
of polyamines to cancer [159,160], and the number of papers
published on this topic continues to rise annually. Despite early
promise, the use of polyamine measurements to diagnose cancer
proved untenable, owing to a number of false positive results
under a variety of conditions. Further research attempted to use
urinary polyamine measurements to monitor the response of
patients to therapy. Here the relationship predicts that patients
in remission will have a urinary polyamine output within the
normal range, but that if recurrence of disease takes place, then
the output of polyamines will rise [161]. Preliminary studies here
in Aberdeen, in collaboration with the Oncology Unit, showed
that measurements from a single urine sample, taken at a clinic
visit, reflected the values obtained from 24 h collection (H. M.
Wallace and A. Hutcheon, unpublished work). To date, there has
been no contradictory evidence to this concept, and therefore
it is disappointing that more use is not made of this relatively
straightforward, non-invasive measurement in monitoring the
progress of treated patients.

Intratumour polyamine concentrations are increased in a large
number of solid tumours [162–167] compared with control values.
Several attempts have been made to correlate polyamine content
with prognostic factors, and in most cases there is a positive
linkage between higher polyamine content and poorer outcome.
In breast cancer a positive correlation exists between tumour
polyamine content and recurrence [162], but again, little use has
been made of this observation in a clinical setting, despite the
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fact that it could help predict those individuals who would benefit
from more aggressive therapy.

The high concentrations of polyamines found in cancer cells
are the result of several changes in polyamine metabolism. The
regulation of ODC, for example, is altered in some tumours, re-
sulting in increased ODC expression. Several studies have con-
firmed that an increase in ODC activity and the subsequent
increase in intracellular polyamine concentrations is an early event
in carcinogenesis (reviewed in [168]). Recently, increases in SSAT
activity and decreases in PAO activity in breast-cancer compared
with normal tissue have also been observed [26].

The mouse model of skin carcinogenesis has been used exten-
sively to examine both the effects of carcinogenic compounds
and the relationship between ODC induction and cancer [169].
Phorbol esters, for example, initiate the development of skin tu-
mours accompanied by an increase in ODC activity and poly-
amine content. Hyperplastic agents, on the other hand, did not
increase ODC activity or promote tumour growth [170]. Inter-
estingly, inhibition of ODC by retinoic acid prevented the form-
ation of skin cancers in this model, suggesting a causal role for
ODC activity in cancer development [171].

ODC is a putative proto-oncogene, with several studies showing
constitutive activation of ODC during cellular transformation with
carcinogens [172], viruses [173] and oncogenes [174]. In addition,
deliberate overexpression of hODC cDNA led to transformation
of NIH 3T3 cells [175] and in nude mice. However increased
ODC activity alone (up to 40-fold) is not sufficient to transform
cells in the absence of an initiating factor [176]. Combined
overexpression of ODC cDNA and a promoter such as c-H-ras
oncogene and/or PMA is required to transform cells [177,178].
Overall, this evidence indicates that ODC overexpression per se
does not transform cells, but it is required as part of the initiation
of the carcinogenic process. On the other hand, in a mouse skin
model of carcinogenesis, O’Brien and colleagues showed that
overexpression of ODC was sufficient for tumour development
[179]. In these experiments, however, ODC expression levels
were very high; it may therefore be that the extent of ODC
overexpression is important in commitment to carcinogenesis.

Polyamines and the regulation of cell death

More recent studies have linked polyamines to cell death, parti-
cularly the cellular suicide known as apoptosis [180]. The effects
of the polyamines are, however, far from simple, with both induc-
tion and inhibition of biosynthetic and catabolic enzyme activities
being associated with increased and decreased apoptosis [136].

One elegant series of studies by Packham and Cleveland [86]
linked increases in ODC activity to apoptosis. Enforced expres-
sion of c-Myc lead to increased ODC activity and apoptosis, both
of which could be prevented by the ODC inhibitor, DFMO. c-Myc
is a regulator of ODC expression, and this study demonstrated that
c-Myc and ODC are involved in both cell growth and cell death. It
is well known that exogenous polyamines can reverse the growth
inhibition caused by DFMO, and in this study a similar reversal
was observed for apoptosis. DFMO will delay 2-deoxy-D-ribose-
induced apoptosis in HL-60 human promyelogenous leukaemic
cells by approx. 24 h, but apoptosis was reinitiated on addition
of exogenous polyamines [181]. This suggests that polyamines
themselves also regulate apoptosis.

In HL-60 cells, exogenous polyamines prevented DNA frag-
mentation associated with etoposide-induced apoptotic cell death.
This suggests that polyamines are inhibitors of apoptosis. By
corollary, polyamine depletion should therefore induce apoptosis.
However, the opposite was found, where the treatment of HL-60

cells with DFMO prevented apoptosis (G. S. Lindsay and H. M.
Wallace, unpublished work). Similarly, treatment with DFMO
decreased the sensitivity of rat/mouse T-cells to apoptosis induced
by tumour necrosis factor (TNF), but cell death was also inhibited
by exogenous spermine [182]. As DFMO depletes putrescine and
spermidine, but can increase spermine content, it may be that
spermine is an important regulator of apoptosis. Indeed, replace-
ment of naturally occurring spermine with spermine analogues
[e.g. bis(ethyl)norspermine] increases the sensitivity of some cells
to apoptosis [182].

All three polyamines prevent cell death in rat cerebellar granule
neurons induced by high KCl concentrations [183]. Exogenous
spermine again prevented apoptosis, implicating a protective role
for polyamines [184]. The protective effects of the polyamines
may be due to DNA stabilization [185], protection of DNA from
oxidative stress [186] or by inhibition of endonucleases [187].

These apparent contradictions can also be resolved by
considering the regulation of polyamine metabolism. Polyamines
down-regulate ODC via AZ, and DFMO also inhibits ODC,
therefore it seems likely that it is inhibition of ODC that prevents
cell death. This would mean that induction of ODC promotes cell
death; yet it is clear from the previous discussion that induction
of ODC also promotes cell growth. Thus the response of the cell
depends on multiple signals for survival or death, and one signal
can produce either response, depending on the environment. In
support of this, we observed a biphasic effect on ODC in HL-
60 cells in response to etoposide, a classic inducer of apoptosis
(G. S. Lindsay and H. M. Wallace, unpublished work). There was
an early, transient increase (2–4 h) in ODC followed by almost
complete inhibition, suggesting that an increase in ODC initiated
apoptosis, whereas a decrease was needed to sustain the process.

Despite the protective effects observed, exogenous polyamines
can also be toxic in high concentrations. Spermine (2 mM) is toxic
to baby-hamster kidney cells in culture. The toxicity was not
due to the production of toxic aldehydes, as serum amine oxidases
were absent [137]. Aminoguanidine, an amine oxidase inhibitor,
prevented some of the observed toxicity, but inhibition of poly-
amine oxidase within the cells by treatment with MDL 72527
[N1,N4-bis(buta-2,3-dienyl)butane-1,4-diamine] potentiated the
toxicity [138]. This suggests that spermine per se is toxic directly
to the cells, although no evidence of apoptosis was observed. On
the other hand, in HL-60 cells spermine triggers cytochrome c
release from mitochondria, initiates caspase 3 activity and causes
cell death via apoptosis [188]. Acetylation of spermine suppresses
the apoptotic potential, indicating again that it is an interaction
of the polyamines themselves and not metabolites. Similar to
spermine, putrescine accumulation within cells is also reported
to be cytotoxic. DH23A DFMO-resistant cells rapidly accumu-
late intracellular putrescine in the absence of DFMO. Failure to
remove DFMO results in high putrescine inducing cell death
[189].

The changes in intracellular polyamine content described above
appear to be transient during apoptosis, with polyamine levels
mainly decreased in the later stages. Preventing degradation of
ODC by the 26 S proteasome inhibits apoptosis, suggesting
that, whereas elevation of ODC is essential for apoptosis (as
discussed above), degradation of the protein is also required for
the completion of cell death [190].

INHIBITORS OF POLYAMINE METABOLISM: DFMO

Polyamines are essential to ensure successful completion of the
replication process, with failure to maintain the individual poly-
amine concentrations leading to cell-cycle arrest, transformation
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or cell death (Table 2). Therefore agents that inhibit polyamine
biosynthesis will prevent, or at least limit, cell growth. This, to-
gether with the fact that polyamine concentrations are increased
in cancer cells, has made the polyamine pathway a target suit-
able for the development of antiproliferative drugs. Inhibitors
specifically designed against individual enzymes in the pathway
result in polyamine depletion and inhibition of cell growth
(Table 1). The biggest problem in utilizing polyamine metabolism
as a therapeutic target is, however, the complex regulatory mech-
anisms that result in compensatory changes in metabolism. These
alterations in transport and metabolism act to maintain homoeo-
stasis, and overcome decreases within the intracellular polyamine
pools. A good example of this is seen with the effects of DFMO
in vivo.

DFMO was the first effective, rationally designed antiprolifera-
tive drug aimed at depleting polyamines from cells [64]. Acting
as a suicide inhibitor of ODC, DFMO induced growth arrest and
decreased the intracellular content of both putrescine and sper-
midine across a range of cell types (normal and malignant) [64],
(for a review, see [191]), and its promise in vitro led to the
testing of the drug in several in vivo models and in clinical
trials. However, despite the early promise in vitro, subsequent
in vivo studies failed to demonstrate lasting antitumour effects.
DFMO treatment was found to exert a cytostatic, rather than
a cytotoxic, effect, mainly due to compensatory increases in the
uptake of polyamines from the circulation, maintaining polyamine
homoeostasis and negating any depletion of tissue or organ
polyamine content [192]. For example, in treatment of acute
leukaemia or melanoma, two types of neoplasia thought to be sus-
ceptible to DFMO, no clinical response was achieved. These
observations were disappointing, but they highlight some of the
problems of chemotherapy with DFMO alone. Uptake of DFMO
is by diffusion and is therefore unpredictable and slow. DFMO is
also rapidly excreted from the body [193]. Consequently, high
doses of DFMO are required to maintain the inhibition of ODC.
Also, DFMO does not affect spermine content of cells, thus
spermine could effectively be recycled and further negate any
effect [194]. Compensatory increases in the uptake of polyamines
from the diet and circulation and paradoxical increases in the other
polyamine metabolic enzymes also contribute to overcoming the
inhibitory effects of DFMO. Thus contrary to predictions, DFMO
was a disappointment in chemotherapy, with in vivo data showing
a varied response in human cancers [195]. The single notable
success with DFMO in cancer chemotherapy is in the treatment
of recurrent gliomas [196].

DFMO did, however, provide the ‘proof of concept’ that in-
hibition of polyamine production does prevent the growth of
tumour cells. New strategies using the polyamine analogues aim
to achieve maximum polyamine depletion by targeting more
than one reaction in the polyamine pathway, thus avoiding the
limitations observed with DFMO. The question that still needs to
be addressed, however, is: ‘how great a depletion of polyamine
content is required to inhibit cell growth?’ This is especially
pertinent in view of some recent transgenic model systems that
show little impairment of function as a result of life-long alteration
in expression of ODC and SAMDC [197]. Similarly, fibroblasts
from cells that lack spermine synthase grow at a normal rate in
culture and show relatively few altered responses [198].

DFMO has, however, been successful as an anti-parasitic agent
where it has been shown to cure acute infections of Trypanosoma
brucei brucei in mammals [199,200]. It has also shown promise
in the cure of African sleeping sickness (caused by T. brucei
gambiense and T. brucei rhodesiense) [201,202]. DFMO prevents
the synthesis of spermidine, which is an essential component
of trypanothione, the trypanosome equivalent of glutathione,

which protects cells from oxidative stress [203,204]. For a
comprehensive review of this area, see [205].

More recently, a resurgence of interest in the use of DFMO in
cancer has occurred, this time using DFMO as a chemopreventa-
tive rather than a chemotherapeutic agent. DFMO is an attractive
drug for cancer prevention as it is relatively non-toxic and
therefore can be given long term with few side effects. Meyskens
et al. [206] have shown that frequent low doses of DFMO are
sufficient to depress polyamine concentrations for prolonged
periods, suggesting that the drug may be more effective in chemo-
prevention. There is potential for DFMO in chemoprevention of
tumours in the colon and rectum, where decreases in ODC activity
and polyamine content limit tumour formation. Although the exact
mechanism is unknown, it is thought that DFMO acts late in
tumour progression [207]. Several in vivo animal studies have
shown that some types of epithelial cancers can be prevented by
daily administration of DFMO. These include skin [208], breast
[209] and bladder [210] cancers. Chemoprevention regimens are
being developed currently in these, and a number of other, human
tumours, such as Barrett’s oesophagus [211]. These trials show
promise, with the few side effects associated with DFMO usage
being reversed on discontinuation of treatment [212].

Polyamine analogues

Bearing in mind the limitations of DFMO as a monotherapy,
agents were developed that would target more than one reaction in
the polyamine pathway. The development of polyamine analogues
was pioneered by Porter, Bergeron and colleagues in the 1980s
with the generation of the symmetrically substituted analogues
such as the bis(ethyl)polyamines [213]. In the 1990s, anal-
ogues were further developed by Woster’s group, and this led to
synthesis of the second generation of unsymmetrically substituted
compounds such as CHENSpm {N1-ethyl-N4-[(cycloheptyl)-
methyl]-4,8-diazaundecane}. More recently, a third generation
of polyamine analogues has been developed by the SLIL
Biomedical Corporation (Madison, WI, U.S.A.), and these com-
pounds include conformationally restricted, cyclic and oligoa-
mine analogues (for reviews of the analogues, see [214]). The
analogues were originally developed as surrogate polyamines to
substitute for the natural amines in cell growth. However, it soon
became clear that these analogues were growth-inhibitory, which
led to the development of an alternative analogue theory.

The concept of polyamine analogues is that, as derivatives of
natural polyamines, they are sufficiently similar in structure to
the parent compound to allow their recognition and subsequent
uptake by the polyamine transporter and to negatively regulate
ODC and SAMDC, but are dissimilar enough to be unable to
substitute functionally [215]. Thus the analogues will, by their
multi-inhibitory approach, not induce the compensatory changes
in metabolism such as those seen with DFMO and will, therefore,
be more effective in inducing growth arrest and apoptosis.

It has become clear that two categories of analogue exist:
the polyamine antimetabolite and the polyamine mimetic. The
antimetabolite analogues result in polyamine depletion in
conjunction with decreases in cell growth, whereas the polyamine
mimetics decrease growth without necessarily producing signi-
ficant polyamine depletion [156]. A bonus of the use of the ana-
logues is that some ‘superinduce’ SSAT, a feature that increases
their ability to deplete intracellular polyamine content. Although
early studies suggested that there was a positive correlation
between growth inhibition and SSAT induction, the relationship
now appears to be cell-type-specific, with some cells, such as
the small-cell-lung-carcinoma and melanoma cells showing a
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high level of sensitivity to the analogues [216,217]. Current
studies with the analogues include combining them with currently
used anticancer drugs, as well as with agents such as DFMO.
Preliminary evidence suggests that this is a positive strategy [218].

THE FUTURE?

At present it seems likely that DFMO will find a new lease of life as
a cancer chemopreventative agent, either alone or in combination
with non-steroidal anti-inflammatory agents. The analogues, too,
may have potential as chemopreventative agents, but may be
more useful in combination with other cytotoxic drugs, where
synergistic effects may be found. Clearly the polyamines can
regulate gene expression, and the PRE on SSAT is likely to be
the first of many such findings. The advent of the new ‘ . . . omics’
technologies will facilitate the identification of other polyamine-
regulated genes involved in both cell growth and cell death. The
interest in the regulation of polyamine metabolism and function
is intense and can, in our opinion, only continue to grow.
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